D04: Interaction of meridional ocean heat transports and regional processes in the Arctic Ocean

PIs: Torsten Kanzow, Marc Salzmann (former PI: Rüdiger Gerdes)

Warm water of Atlantic Ocean origin is advected into the Arctic Ocean. This water has been warming over the past decades and it has been gaining in importance in  melting Arctic sea ice. Recently, we could show that the decadal forcing of heat transport into the Barents Sea Opening is linked to both a wind forcing pattern extending  along the Norwegian coast associated with the North Atlantic Oscillation (NAO) and to another distinct pattern centered around Svalbard. We were able to demonstrate  that the pronounced sea ice decline in the Northern Barents Sea over the past decades has been associated with the development of a local, cyclonic wind anomaly, driven  by increased sea-to-air heat fluxes. This anomaly has left the heat transport into Barents Sea Opening relatively unchanged, yet, it has decreased the amount of Atlantic  Water flowing into the Arctic Ocean via Fram Strait. At the same time, we found CMIP5 multi-model projections for a high emission Greenhouse gas scenario to show  strongly increasing sea-to-air heat fluxes toward the end of this century along the pathway of the Arctic Boundary Current in winter – confirming the concept of  Atlantification.

Building on our results from phase II, in phase III we will quantify the contribution of ocean heat transport through the Arctic Gateways in driving the  observed variability of Arctic sea ice over the past few decades using AWI’s coupled climate model (AWI-CM). We will further work towards understanding the  redistribution of heat by ocean circulation and stratification within the Arctic Ocean, so that it becomes available for melting sea ice and warming the atmospheric  boundary layer. To this end, we plan to employ tracer diagnostics to assess transport and vertical mixing in the ocean component of AWI-CM. We will investigate  potential relationships between simulated tracer distributions and Arctic amplification in AWI-CM and CMIP6 models. We will investigate shortcomings in the current  CMIP framework by misrepresentation of upper-ocean mesoscale processes. Using AWI-CM, we will infer how an increased realism in the representation ocean dynamics  affects upward heat transport and trends in sea ice in the entire Arctic domain until the end of this century. We expect major sensitivities in vertical and  orizontal heat fluxes along the inflow pathways of warm water, which are the areas mostly affected by Atlantification today, coinciding with areas of maximum sea ice  retreat in winter. The last step will be to study sensitivities in atmospheric feedback mechanisms in AWI-CM relative to the realism in the representation ocean dynamics.  In particular, we expect the horizontal distribution of the intensity of the lapse rate feedback to be largely governed by the vertical ocean heat fluxes and ice cover.

Hypothesis:

Ocean heat transport is becoming increasingly important for Arctic amplification and is coupled to atmospheric dynamics and sea ice decline.

Specific questions we want to answer:

  • To what extent does ocean heat transport control changes in observed sea ice extent and air sea heat fluxes?
  • What is the recent and future evolution of horizontal and vertical ocean transport processes within the Arctic Ocean?
  • How do ocean heat transport processes contribute to future Arctic warming?

Our goal to quantify atmospheric feedback sensitivity to ocean processes represents an important element of SQ1. Our study of impacts of ocean heat transports through the Arctic gateways targets the most important ocean connection between the midlatitudes and the Arctic Ocean, and ideally contributes to SQ2. Thirdly, our work on  both climate model projections and recent changes in the Arctic is a fundamental element of SQ3. Our study thus contributes to all three SQs of (AC)³.

Role within (AC)³

Collabortion Matrix Phase III_D04

Members

Ufuk Özkan

PhD

Alfred-Wegener-Insitute Helmholtz Center for Polar and Marine Research (AWI)
Bussestraße 24
27570 Bremerhaven

phone:

will follow

e-mail:

ufuk.oezkan[at]awi.de

Dr. Marc Salzmann

Principal Investigator

University of Leipzig
Leipzig Institute for Meteorology (LIM)
Stephanstr. 3
04103 Leipzig

phone:

++49 (0) 341 97 32932

e-mail:

marc.salzmann[at]uni-leipzig.de

Khaled Al Hajjar

PhD

University of Leipzig
Leipzig Institute for Meteorology (LIM)
Stephanstr. 3
04103 Leipzig

phone:

++49 (0) 341 97 32940

e-mail:

khajjar[at]uni-leipzig.de

Prof Dr. Torsten Kanzow

Principal Investigator

Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research (AWI)
Am Handelshafen 12
27570 Bremerhaven

phone:

++49 (0) 471 4831 2913

e-mail:

torsten.kanzow[at]awi.de

Publications

2024

R. A. McPherson, C. Wekerle, T. Kanzow, M. Ionita, F. O. Heukamp, O. Zeising, and A. Humbert, 2024, Atmospheric blocking slows ocean-driven melting of Greenland’s largest glacier tongue. Science, 385, 1360-1366, https://doi.org/10.1126/science.ado5008

Heukamp, F., 2024: Interannual Variability of the Ocean Circulation in the Atlantic-Arctic Ocean Gateways, Dissertation, Universität Bremen, https://media.suub.uni-bremen.de/handle/elib/7999

2023

Heukamp, F.O., L. Aue, Q. Wang, M. Ionita, T. Kanzow, C. Wekerle, A. Rinke, 2023: Cyclones Modulate the Control of the North Atlantic Oscillation on Transports into the Barents Sea, Commun Earth Environ 4, 324 (2023). https://doi.org/10.1038/s43247-023-00985-1

Metzner, E. P., and Salzmann M., 2023, Technical note: Determining Arctic Ocean halocline and cold halostad depths based on vertical stability, Ocean Sci., 5, 1453-1464, https://doi.org/10.5194/os-19-1453-2023.

al Hajjar, K. & Salzmann, M., 2023: Contributions of local heat storage and ocean heat transport to cold season Arctic Ocean surface energy fluxes in CMIP6 models, Q.J.R. Meteorol. Soc., https://doi.org/10.1002/qj.4496

Heukamp, F. O.; Kanzow, T.; Wang, Q.; Wekerle, C.  & Gerdes, R., 2023: Impact of Cyclonic Wind Anomalies Caused by Massive Winter Sea Ice Retreat in the Barents Sea on Atlantic Water Transport towards the Arctic: A Model Study. J. Geophys. Res.: Oceans, 128, e2022JC019045, https://doi.org/10.1029/2022JC019045

Wendisch, M.; Brückner, M.; Crewell, S.; Ehrlich, A.; Notholt, J.; Lüpkes, C.; Macke, A.; Burrows, J. P.; Rinke, A.; Quaas, J.; Maturilli, M.; Schemann, V.; Shupe, M. D.; Akansu, E. F.; Barrientos-Velasco, C.; Bärfuss, K.; Blechschmidt, A.-M.; Block, K.; Bougoudis, I.; Bozem, H.; Böckmann, C.; Bracher, A.; Bresson, H.; Bretschneider, L.; Buschmann, M.; Chechin, D. G.; Chylik, J.; Dahlke, S.; Deneke, H.; Dethloff, K.; Donth, T.; Dorn, W.; Dupuy, R.; Ebell, K.; Egerer, U.; Engelmann, R.; Eppers, O.; Gerdes, R.; Gierens, R.; Gorodetskaya, I. V.; Gottschalk, M.; Griesche, H.; Gryanik, V. M.; Handorf, D.; Harm-Altstädter, B.; Hartmann, J.; Hartmann, M.; Heinold, B.; Herber, A.; Herrmann, H.; Heygster, G.; Höschel, I.; Hofmann, Z.; Hölemann, J.; Hünerbein, A.; Jafariserajehlou, S.; Jäkel, E.; Jacobi, C.; Janout, M.; Jansen, F.; Jourdan, O.; Jurányi, Z.; Kalesse-Los, H.; Kanzow, T.; Käthner, R.; Kliesch, L. L.; Klingebiel, M.; Knudsen, E. M.; Kovács, T.; Körtke, W.; Krampe, D.; Kretzschmar, J.; Kreyling, D.; Kulla, B.; Kunkel, D.; Lampert, A.; Lauer, M.; Lelli, L.; von Lerber, A.; Linke, O.; Löhnert, U.; Lonardi, M.; Losa, S. N.; Losch, M.; Maahn, M.; Mech, M.; Mei, L.; Mertes, S.; Metzner, E.; Mewes, D.; Michaelis, J.; Mioche, G.; Moser, M.; Nakoudi, K.; Neggers, R.; Neuber, R.; Nomokonova, T.; Oelker, J.; Papakonstantinou-Presvelou, I.; Pätzold, F.; Pefanis, V.; Pohl, C.; van Pinxteren, M.; Radovan, A.; Rhein, M.; Rex, M.; Richter, A.; Risse, N.; Ritter, C.; Rostosky, P.; Rozanov, V. V.; Donoso, E. R.; Saavedra-Garfias, P.; Salzmann, M.; Schacht, J.; Schäfer, M.; Schneider, J.; Schnierstein, N.; Seifert, P.; Seo, S.; Siebert, H.; Soppa, M. A.; Spreen, G.; Stachlewska, I. S.; Stapf, J.; Stratmann, F.; Tegen, I.; Viceto, C.; Voigt, C.; Vountas, M.; Walbröl, A.; Walter, M.; Wehner, B.; Wex, H.; Willmes, S.; Zanatta, M. & Zeppenfeld, S., 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)³ Project, Bull. Am. Meteorol. Soc., American Meteorological Society, 104, E208–E242, https://doi.org/10.1175/bams-d-21-0218.1

2022

Salzmann, M.; Ferrachat, S.; Tully, C.; Münch, S.; Watson-Parris, D.; Neubauer, D.; Siegenthaler-Le Drian, C.; Rast, S.; Heinold, B.; Crueger, T.; Brokopf, R.; Mülmenstädt, J.; Quaas, J.; Wan, H.; Zhang, K.; Lohmann, U.; Stier, P. & Tegen, I., 2022: The Global Atmosphere-aerosol Model ICON-A-HAM2.3–Initial Model Evaluation and Effects of Radiation Balance Tuning on Aerosol Optical Thickness, J. Adv. Model. Earth Syst., 14, e2021MS002699, https://doi.org/10.1029/2021MS002699

Salzmann, M., Ferrachat, S., Tully, C., Münch, S., Watson-Parris, D., Neubauer, D., et al., 2022. The global atmosphere-aerosol model ICON-A-HAM2.3–Initial model evaluation and effects of radiation balance tuning on aerosol optical thickness. J. Adv. Model. Earth Syst., 14, e2021MS002699. https://doi.org/10.1029/2021MS002699

2021

2020

Kovács, T., R. Gerdes, and J. Marshall, 2020: Wind Feedback Mediated by Sea Ice in the Nordic Seas. J. Climate, 33, 6621–6632, https://doi.org/10.1175/JCLI-D-19-0632.1

Metzner, E. P., Salzmann, M., and Gerdes, R. , 2020. Arctic Ocean Surface Energy Flux and the Cold Halocline in Future Climate Projections. J. Geophys. Res. Oceans, 125, e2019JC015554, doi:10.1029/2019JC015554.

Muilwijk, M., Ilicak, M., Cornish, S. B., Danilov, S., Gelderloos, R., Gerdes, R., et al., 2019. Arctic Ocean response to Greenland Sea wind anomalies in a suite of model simulations. J. Geophys. Res. Oceans, 124, 6286– 6322. https://doi.org/10.1029/2019JC015101

Project Poster

Phase III Evalaution poster 2023

Project_D04_evaluation

Phase II Evalaution poster 2019

D04_Poster_fin_pII