B05: Variability and trends of water vapor in the Arctic

PIs: Kerstin Ebell, Gunnar Spreen (former PIs: Susanne Crewell, Annette Rinke, Georg Heygster)

Water vapor (WV) is the strongest greenhouse gas and a key candidate for contributing to Arctic amplification. However, as shown in phases I and II of (AC)³, the lack of  Arctic-wide reference WV observations together with the pronounced temporal and regional variability of WV hampers a firm assessment of the role of WV for Arctic  amplification. When comparing different satellite WV products in the Arctic, systematic differences have been revealed, which particularly appear over different surface types (ocean, sea ice) and are partly related to the complex surface emissivity in the microwave (MW) spectral region. Thus, high-quality WV reference measurements for  the Arctic are crucial for the evaluation of existing WV data sets to better understand the spatio-temporal characteristics of WV and its role in Arctic amplification. Within (AC)³, we intensified the observations of WV and surface characteristics in the central Arctic. We collected a comprehensive data set of MW remote sensing and in-situ WV, snow and sea ice measurements as part of the MOSAiC, ATWAICE and HALO–(AC)³ campaigns. Improved retrievals for both satellite and ground-based  MWR WV products have been developed. We will further exploit these unique WV data sets of the ship-based and airborne campaigns together with existing long-term  and upcoming satellite and reanalysis data to assess the role of WV in Arctic amplification. We will analyze long-term trends in WV and evaluate their uncertainties,  especially if the overall moistening trend found in reanalyses is reproduced by satellite data. The magnitude of the WV trend varies strongly between different reanalyses  and will be constrained here by new satellite data. We will also characterize in detail WV during campaign periods with a focus on the strong temporal variability in WV,  its vertical structure, and its impact on the atmospheric column properties and downward terrestrial radiation. New satellites will be exploited for more accurate and  abundant WV observations, which will also benefit research beyond (AC)³.

Hypothesis:

Improved observations of spatio-temporal water vapor variability help to quantify the role of water vapor for Arctic amplification.

Specifically we want to answer the following questions:

  • Can we quantify the relevance of the WV feedback on Arctic amplification?
  • Can we explain the strong differences between different WV products (reanalyses, satellites) using long-term and campaign-based reference measurements?
  • How important is the vertical distribution of WV for the downward terrestrial radiation and the resulting impact on Arctic amplification?

As a greenhouse gas, WV impacts the downward terrestrial radiation (DTR) and thus surface temperature, i.e., a direct link to Arctic amplification (SQ1). The impact of  WV and the WV profile on the DTR is thus a focus of B05. B05 will also look at the temporal variability of WV, in particular moisture intrusions from lower latitudes  (SQ2) and the resulting effects on the atmospheric column. Long-term satellite and reanalysis data will be used to identify WV trends for the Arctic giving further insights  into the future role of WV for Arctic amplification (SQ3).

Achievements phase II

  • New ground-based IWV MW retrieval exploiting higher (183 GHz) frequencies with an improved accuracy in low IWV conditions
  • New satellite MW IWV retrieval that includes variable snow/ice surface emissivities
  • Contributing to unique observational data records of WV in the central Arctic for the MOSAiC, ATWAICE and HALO–(AC)³ campaigns
  • Analysis of a WAI in April 2020 during MOSAiC (CCA4) and impact on sea ice concentration
  • Evaluation of IWV from satellite products and reanalyses for ACLOUD/PASCAL campaign

Achievements phase I

In B05, new retrieval techniques to derive the Integrated Water Vapour (IWV) from satellite have been developed allowing continuous measurements of IWV fields over the ocean and sea ice by merging observations from different microwave satellite sensors (Scarlat et al., 2017; Triana Gómez et al., 2018; Triana Gómez et al., submitted 2019). A quantification of the uncertainty of trends in total water vapour based on reanalysis was performed (Rinke et al., 2019). Simulations of microwave brightness temperature for polar lows were carried out. Furthermore, an evaluation of IWV from satellite products, reanalyses, and HIRHAM simulations was done for the ACLOUD campaign. Also, an  investigation of the relationship between IWV and thermal-infrared downward radiation in reanalyses and models was performed for the period of 1979-2016.

Role within (AC)³

Collabortion Matrix Phase III_B05

Members

Andreas Walbröl

PhD

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

phone:

++49 (0) 221 470 3690

e-mail:

Dr. Gunnar Spreen

Principal Investigator

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28359 Bremen

phone:

++49 (0) 421 218 62190

e-mail:

gunnar.spreen[at]uni-bremen.de

Dr. Christian Melsheimer

Senior Scientist

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28334 Bremen

phone:

++49 (0) 421 2186 62181

e-mail:

melsheimer[at]uni-bremen.de

Janna Rückert

PhD

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28334 Bremen

phone:

++49 (0) 421 2186 2172

e-mail:

janna.rueckert[at]uni-bremen.de

Dr. Kerstin Ebell

Principal Investigator

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

phone:

++49 (0) 221 470 3691

e-mail:

Former Members

Prof. Dr. Susanne Crewell

Principal Investigator

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

phone:

++49 (0) 221 470 5286

e-mail:

susanne.crewell[at]uni-koeln.de

Leif-Leonard Kliesch

PhD (in phase I)

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

Dr. Georg Heygster

Principal Investigator

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28334 Bremen

phone:

++49 (0) 421 2186 2180

e-mail:

heygster[at]uni-bremen.de

Dr. Arantxa Triana Goméz

PhD (in phase I)

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28334 Bremen

Dr. Annette Rinke

Principal Investigator

Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research (AWI)
Telegrafenberg A45
14473 Potsdam

phone:

++49 (0) 331 58174 5202

e-mail:

Annette.Rinke[at]awi.de

Dr. Ana Radovan

PhD (in phase I)

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

Publications

2024

Walbröl, A., Griesche, H. J., Mech, M., Crewell, S., and Ebell, K., 2024: Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products, Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024.

Risse, N., Mech, M., Prigent, C., Spreen, G., and Crewell, S., 2024: Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations, The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024.

Wendisch, M., Crewell, S., Ehrlich, A., Herber, A., Kirbus, B., Lüpkes, C., Mech, M., Abel, S. J., Akansu, E. F., Ament, F., Aubry, C., Becker, S., Borrmann, S., Bozem, H., Brückner, M., Clemen, H.-C., Dahlke, S., Dekoutsidis, G., Delanoë, J., De La Torre Castro, E., Dorff, H., Dupuy, R., Eppers, O., Ewald, F., George, G., Gorodetskaya, I. V., Grawe, S., Groß, S., Hartmann, J., Henning, S., Hirsch, L., Jäkel, E., Joppe, P., Jourdan, O., Jurányi, Z., Karalis, M., Kellermann, M., Klingebiel, M., Lonardi, M., Lucke, J., Luebke, A. E., Maahn, M., Maherndl, N., Maturilli, M., Mayer, B., Mayer, J., Mertes, S., Michaelis, J., Michalkov, M., Mioche, G., Moser, M., Müller, H., Neggers, R., Ori, D., Paul, D., Paulus, F. M., Pilz, C., Pithan, F., Pöhlker, M., Pörtge, V., Ringel, M., Risse, N., Roberts, G. C., Rosenburg, S., Röttenbacher, J., Rückert, J., Schäfer, M., Schaefer, J., Schemann, V., Schirmacher, I., Schmidt, J., Schmidt, S., Schneider, J., Schnitt, S., Schwarz, A., Siebert, H., Sodemann, H., Sperzel, T., Spreen, G., Stevens, B., Stratmann, F., Svensson, G., Tatzelt, C., Tuch, T., Vihma, T., Voigt, C., Volkmer, L., Walbröl, A., Weber, A., Wehner, B., Wetzel, B., Wirth, M., and Zinner, T., 2024: Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO-(AC)³ aircraft campaign, Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024.

L. Thielke, G. Spreen, M. Huntemann, D. Murashkin, 2024; Spatio-temporal variability of small-scale leads based on helicopter maps of winter sea ice surface temperatures. Elem. Sci. Anth,  12 (1): 00023. https://doi.org/10.1525/elementa.2023.00023

Rückert, J., 2024: Unraveling Atmosphere and Sea Ice in the Arctic – Advancements in a Multi-Parameter Retrieval using Satellite Microwave Radiometer Data, Dissertation, Universität Bremen, https://media.suub.uni-bremen.de/handle/elib/7903

Pablo Saavedra Garfias, Heike Kalesse-Los, Kerstin Ebell, 2024; Estimation of wintertime cloud radiative effects in the Western Arctic, a function of cloud-moisture-coupling and sea ice conditions. AIP Conf. Proc.; 2988 (1): 070008. https://doi.org/10.1063/5.0182751

2023

Rückert, J. E., Huntemann, M., Tonboe, R. T. & Spreen, G., 2023: Modeling snow and ice microwave emissions in the Arctic for a multi-parameter retrieval of surface and atmospheric variables from microwave radiometer satellite data. Earth Space Sci., 10, e2023EA003177. https://doi.org/10.1029/2023EA003177

Walbröl, A., Michaelis, J., Becker, S., Dorff, H., Gorodetskaya, I., Kirbus, B., Lauer, M., Maherndl, N., Maturilli, M., Mayer, J., Müller, H., Neggers, R. A. J., Paulus, F. M., Röttenbacher, J., Rückert, J. E., Schirmacher, I., Slättberg, N., Ehrlich, A., Wendisch, M., and Crewell, S., 2023: Environmental conditions in the North Atlantic sector of the Arctic during the HALO–(AC)³ campaign, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-668.

Rückert, J. E.; Rostosky, P.; Huntemann, M.; Clemens-Sewall, D.; Ebell, K.; Kaleschke, L.; Lemmetyinen, J.; Macfarlane, A. R.; Naderpour, R.; Stroeve, J.; Walbröl, A. & Spreen, G., 2023: Sea ice concentration satellite retrievals influenced by surface changes due to warm air intrusions: A case study from the MOSAiC expedition, Elem. Sci. Anth., 11 (1): 00039, https://doi.org/10.1525/elementa.2023.00039

Kirbus, B.; Tiedeck, S.; Camplani, A.; Chylik, J.; Crewell, S.; Dahlke, S.; Ebell, K.; Gorodetskaya, I.; Griesche, H.; Handorf, D.; Höschel, I.; Lauer, M.; Neggers, R.; Rückert, J.; Shupe, M. D.; Spreen, G.; Walbröl, A.; Wendisch, M. & Rinke, A., 2023: Surface impacts and associated mechanisms of a moisture intrusion into the Arctic observed in mid-April 2020 during MOSAiC, Front. Earth Sci., 11, https://doi.org/10.3389/feart.2023.1147848

Wendisch, M.; Brückner, M.; Crewell, S.; Ehrlich, A.; Notholt, J.; Lüpkes, C.; Macke, A.; Burrows, J. P.; Rinke, A.; Quaas, J.; Maturilli, M.; Schemann, V.; Shupe, M. D.; Akansu, E. F.; Barrientos-Velasco, C.; Bärfuss, K.; Blechschmidt, A.-M.; Block, K.; Bougoudis, I.; Bozem, H.; Böckmann, C.; Bracher, A.; Bresson, H.; Bretschneider, L.; Buschmann, M.; Chechin, D. G.; Chylik, J.; Dahlke, S.; Deneke, H.; Dethloff, K.; Donth, T.; Dorn, W.; Dupuy, R.; Ebell, K.; Egerer, U.; Engelmann, R.; Eppers, O.; Gerdes, R.; Gierens, R.; Gorodetskaya, I. V.; Gottschalk, M.; Griesche, H.; Gryanik, V. M.; Handorf, D.; Harm-Altstädter, B.; Hartmann, J.; Hartmann, M.; Heinold, B.; Herber, A.; Herrmann, H.; Heygster, G.; Höschel, I.; Hofmann, Z.; Hölemann, J.; Hünerbein, A.; Jafariserajehlou, S.; Jäkel, E.; Jacobi, C.; Janout, M.; Jansen, F.; Jourdan, O.; Jurányi, Z.; Kalesse-Los, H.; Kanzow, T.; Käthner, R.; Kliesch, L. L.; Klingebiel, M.; Knudsen, E. M.; Kovács, T.; Körtke, W.; Krampe, D.; Kretzschmar, J.; Kreyling, D.; Kulla, B.; Kunkel, D.; Lampert, A.; Lauer, M.; Lelli, L.; von Lerber, A.; Linke, O.; Löhnert, U.; Lonardi, M.; Losa, S. N.; Losch, M.; Maahn, M.; Mech, M.; Mei, L.; Mertes, S.; Metzner, E.; Mewes, D.; Michaelis, J.; Mioche, G.; Moser, M.; Nakoudi, K.; Neggers, R.; Neuber, R.; Nomokonova, T.; Oelker, J.; Papakonstantinou-Presvelou, I.; Pätzold, F.; Pefanis, V.; Pohl, C.; van Pinxteren, M.; Radovan, A.; Rhein, M.; Rex, M.; Richter, A.; Risse, N.; Ritter, C.; Rostosky, P.; Rozanov, V. V.; Donoso, E. R.; Saavedra-Garfias, P.; Salzmann, M.; Schacht, J.; Schäfer, M.; Schneider, J.; Schnierstein, N.; Seifert, P.; Seo, S.; Siebert, H.; Soppa, M. A.; Spreen, G.; Stachlewska, I. S.; Stapf, J.; Stratmann, F.; Tegen, I.; Viceto, C.; Voigt, C.; Vountas, M.; Walbröl, A.; Walter, M.; Wehner, B.; Wex, H.; Willmes, S.; Zanatta, M. & Zeppenfeld, S., 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)³ Project, Bull. Am. Meteorol. Soc., American Meteorological Society, 104, E208–E242, https://doi.org/10.1175/bams-d-21-0218.1

2022

Lu, J., Scarlat, R., Heygster, G., & Spreen, G., 2022. Reducing weather influences on an 89 GHz sea ice concentration algorithm in the Arctic using retrievals from an optimal estimation method. J. Geophys. Res. Oceans, 127, e2019JC015912. https://doi.org/10.1029/2019JC015912

Walbröl, A., Crewell, S., Engelmann, R., Orlandi, E., Grische, H., Radenz, M., Hofer, J., Althausen, D., Maturilli, M. & Ebell, K., 2022: Atmospheric temperature, water vapour and liquid water path from two microwave radiometers during MOSAiC. Sci Data 9, 534. https://doi.org/10.1038/s41597-022-01504-1

 

Shupe, M.D., M. Rex, B. Blomquist, P.O.G. Persson, J. Schmale, T. Uttal, D. Althausen, H. Angot, S. Archer, L. Bariteau, I. Beck, J. Bilberry, S. Bussi, C. Buck, M. Boyer, Z. Brasseur, I.M. Brooks, R. Calmer, J. Cassano, V. Castro, D. Chu, D. Costa, C.J. Cox, J. Creamean, S. Crewell, S. Dahlke, E. Damm, G. de Boer, H. Deckelmann, K. Dethloff, M. Dütsch, K. Ebell, A. Ehrlich, J. Ellis, R. Engelmann, A.A. Fong, M.M. Frey, M.R. Gallagher, L. Ganzeveld, R. Gradinger, J. Graeser, V. Greenamyer, H. Griesche, S. Griffiths, J. Hamilton, G. Heinemann, D. Helmig, A. Herber, C. Heuzé, J. Hofer, T. Houchens, D. Howard, J. Inoue, H.-W. Jacobi, R. Jaiser, T. Jokinen, O. Jourdan, G. Jozef, W. King, A. Kirchgaessner, M. Klingebiel, M. Krassovski, T. Krumpen, A. Lampert, W. Landing, T. Laurila, D. Lawrence, B. Loose, M. Lonardi, C. Lüpkes, M. Maahn, A. Macke, W. Maslowski, C. Marsay, M. Maturilli, M. Mech, S. Morris, M. Moser, M. Nicolaus, P. Ortega, J. Osborn, F. Pätzold, D.K. Perovich, T. Petäjä, C. Pilz, R. Pirazzini, K. Posman, H. Powers, K.A. Pratt, A. Preußer, L. Quéléver, M. Radenz, B. Rabe, A. Rinke, T. Sachs, A. Schulz, H. Siebert, T. Silva, A. Solomon, A. Sommerfeld, G. Spreen, M. Stephens, A. Stohl, G. Svensson, J. Uin, J. Viegas, C. Voigt, P. von der Gathen, B. Wehner, J.M. Welker, M. Wendisch, M. Werner, Z. Xie, F. Yue, 2022: Overview of the MOSAiC expedition – Atmosphere.  Elementa: Science of the Anthropocene, 10 (1): 00060, https://doi.org/10.1525/elementa.2021.00060.

Bresson, H., Rinke, A., Mech, M., Reinert, D., Schemann, V., Ebell, K., Maturilli, M., Viceto, C., Gorodetskaya, I., and Crewell, S., 2022: Case study of a moisture intrusion over the Arctic with the ICOsahedral Non-hydrostatic (ICON) model: resolution dependence of its representation, Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022.

2021

Krumpen, T., von Albedyll, L., Goessling, H. F., Hendricks, S., Juhls, B., Spreen, G., Willmes, S., Belter, H. J., Dethloff, K., Haas, C., Kaleschke, L., Katlein, C., Tian-Kunze, X., Ricker, R., Rostosky, P., Rückert, J., Singha, S., and Sokolova, J., 2021: MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years, Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021.

Crewell, S., Ebell, K., Konjari, P., Mech, M., Nomokonova, T., Radovan, A., Strack, D., Triana-Gómez, A. M., Noël, S., Scarlat, R., Spreen, G., Maturilli, M., Rinke, A., Gorodetskaya, I., Viceto, C., August, T., and Schröder, M., 2021: A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means, Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021.

Zhou, L., Stroeve, J., Xu, S., Petty, A., Tilling, R., Winstrup, M., Rostosky, P., Lawrence, I. R., Liston, G. E., Ridout, A., Tsamados, M., and Nandan, V., 2021: Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval, The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021.

2020

Radovan, A., 2020: Variability and trends of Arctic water vapour from passive microwave satellites – Special Role of Polar Lows and Atmospheric Rivers, Universität zu Köln, http://kups.ub.uni-koeln.de/id/eprint/53609.

Triana-Gómez, A. M., Heygster, G., Melsheimer, C., Spreen, G., Negusini, M., and Petkov, B. H., 2020: Improved water vapour retrieval from AMSU-B and MHS in the Arctic, Atmos. Meas. Tech., 13, 3697–3715, https://doi.org/10.5194/amt-13-3697-2020.

Scarlat, R. C., G. Spreen, G. Heygster, M. Huntemann, C. Patilea, L. Toudal Pedersen, and R. Saldo, 2020. Sea Ice and Atmospheric Parameter Retrieval From Satellite Microwave Radiometers: Synergy of AMSR2 and SMOS Compared With the CIMR Candidate Mission. J. Geophys. Res. Oceans, 125(3), e2019JC015749. https://doi.org/10.1029/2019JC015749

Ludwig, V.; Spreen, G.; Pedersen, L.T., 2020: Evaluation of a New Merged Sea-Ice Concentration Dataset at 1 km Resolution from Thermal Infrared and Passive Microwave Satellite Data in the Arctic. Rem. Sens., 12, 3183. https://doi.org/10.3390/rs12193183

2019

Rinke, A., B. Segger, S. Crewell, M. Maturilli, T. Naakka, T. Nygaard, T. Vihma, F. Alshawaf, G. Dick, and J. Wickert, and J. Keller, 2019: Trends of vertically integrated water vapor over the Arctic during 1979-2016: Consistent moistening all over? J. Clim., 32, 6096-6116, doi:10.1175/JCLI-D-19-0092.1

Radovan A., S. Crewell, E.M. Knudsen, and A. Rinke, 2019: Environmental conditions for polar low formation and development over the Nordic Seas: study of January cases based on the Arctic System Reanalysis, Tellus A71 (1), 1-16, doi:10.1080/16000870.2019.1618131

Wendisch, M., A. Macke, A. Ehrlich, C. Lüpkes, M. Mech, D. Chechin, K. Dethloff, C. Barrientos, H. Bozem, M. Brückner, H.-C. Clemen, S. Crewell, T. Donth, R. Dupuy, C. Dusny, K. Ebell, U. Egerer, R. Engelmann, C. Engler, O. Eppers, M. Gehrmann, X. Gong, M. Gottschalk, C. Gourbeyre, H. Griesche, J. Hartmann, M. Hartmann, B. HeinoldA. Herber, H. Herrmann, G. Heygster, P. Hoor, S. Jafariserajehlou, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, S. Kecorius, E.M. Knudsen, F. Köllner, J. Kretzschmar, L. Lelli, D. Leroy, M. Maturilli, L. Mei, S. Mertes, G. Mioche, R. Neuber, M. Nicolaus, T. Nomokonova, J. Notholt, M. Palm, M. van Pinxteren, J. Quaas, P. Richter, E. Ruiz-Donoso, M. Schäfer, K. Schmieder, M. Schnaiter, J. Schneider, A. Schwarzenböck, P. Seifert, M.D. Shupe, H. Siebert, G. Spreen, J. Stapf, F. Stratmann, T. Vogl, A. Welti, H. Wex, A. Wiedensohler, M. Zanatta, S. Zeppenfeld, 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteor. Soc., 100 (5), 841–871, doi:10.1175/BAMS-D-18-0072.1

2018

Knudsen, E.M., B. Heinold, S. Dahlke, H. Bozem, S. Crewell, I. V. Gorodetskaya, G. Heygster, D. Kunkel, M. MaturilliM. Mech, C. Viceto, A. Rinke, H. Schmithüsen, A. Ehrlich, A. Macke, C. Lüpkes, M. Wendisch, 2018: Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017, Atmos. Chem. Phys., 18, 17995-18022, doi:10.5194/acp-18-17995-2018

Triana Gómez, A., G. Heygster, C. Melsheimer, and G. Spreen, 2018: Towards a Merged Total Water Vapour Retrieval from AMSU-B and AMSR-E Data in the Arctic Region, Proceedings of the “IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium,” IEEE, Valencia, 1818–1821, doi:10.1109/igarss.2018.8517863

Scarlat, R. C., C. Melsheimer, and G. Heygster, 2018: Retrieval of Total Water Vapour in the Arctic Using Microwave Humidity Sounders, Atmos. Meas. Tech.11, 2067-2084, doi:10.5194/amt-11-2067-2018

Bühl, J., Alexander, S., Crewell, S., Heymesfield, A., Kalesse, H., Khain, A., Maahn, M., van Tricht, K., Wendisch, M., 2017: Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Baumgardner, D., McFarquhar, G., and Heymsfield, A. (Eds.), Chapter 10: Remote Sensing, AMS Meteorological Monographs, 58, 10.1-10.21, doi:10.1175/AMSMONOGRAPHS-D-16-0015.1

Project Poster

 Phase III Evaluation poster 2023

Project_B05_evaluation

 Phase II Evaluation poster 2019

B05_Poster_fin_pII

 Phase I Evaluation poster 2015

B05_Poster_fin_pI