B04: Spatial distribution, sources, and cloud processing of aerosol particles

PIs: Andreas Herber, Manuela van Pinxteren, Mira Pöhlker, (former PI: Hartmut Herrmann, Frank Stratmann)

Aerosol particles in general, and in particular Cloud Condensation Nuclei (CCN), Ice Nucleating Particles (INP), and Black Carbon (BC) particles influence the formation,  the phase state, and properties of Arctic clouds, and thereby the radiative budget of the Arctic. Therefore, they play an important, but not fully understood role in the  Arctic amplification. During the project phases I and II, we carried out groundbased and aircraft CCN, INP, and BC measurements, quantified the spatial and temporal  variability of particle concentrations and properties, shed light on the particles’ origins and sources, unraveled linkages between INP and marine polysaccharides, and  started to investigate the ocean as a potential marine INP source. For better understanding of aerosol interaction with clouds in the atmospheric boundary layer (ABL)  not only the concentrations of the aerosol particles are important, also knowledge concerning particle fluxes at the bottom, the top and inside the marine boundary layer  is needed, e.g., to distinguish between particles originating from local sources or long-range transport. This additional information can only be gained by simultaneous  turbulence and aerosol measurements near the surface, and at the top of the ABL. This will be done in phase III with the newly developed airborne towed vehicle T-Bird  together with the Polar 6 research aircraft, allowing for simultaneous aerosol and turbulence measurements at so-far unexplored low altitudes (near surface, 10 – 15 m)  up to the ABL height and above. T-Bird measurements will be supplemented by dedicated laboratory experiments, in course of which the transfer and enrichment of INP  and marine polysaccharides as INP tracers from the ocean to the atmosphere are studied.

Hypothesis:

Turbulent up and downward transport together with ocean-atmosphere transfer and long-range transport play key roles for the distribution and properties of aerosol  particles as well as aerosol-cloud interactions in the atmospheric boundary layer over the marginal sea ice zone.

We want to address the following scientific questions:

  • What are the concentrations and properties of Arctic aerosol particles, especially CCN, INP, and BC, inside and outside the ABL, and do they show a long-term  trend?
  • Does a connection exist between heat and/or energy fluxes and aerosol particle fluxes inside and outside the ABL?
  • Can the sea-to-air enrichment of INP/INP-tracers explain ambient Arctic INP concentrations?

Both, mixing at the bottom and top of the boundary layer and ocean to atmosphere aerosol particle transfer processes, are not well represented in atmospheric models.  The project will help to elucidate their impacts on aerosol-cloud-interactions and resulting radiative effect. Our data will be prepared for implementation in atmospheric  models and thereby help to better understand, how Arctic amplification will evolve in the future (SQ3).

Achievements phase II

  • A new parameterization (Sze et al., 2022) concerning Arctic INP concentrations as function of season and temperature has been developed for use in atmospheric models (LES to global scale).
  • Indications towards the marine origin of INP in the European Arctic have been found (Hartmann et al., 2020, 2021).
  • Nine years of aircraft campaigns focusing on the differences between spring and summer, and on the vertical distribution of BC revealed a strong seasonal  variability that is not only present at ground-level but also at higher altitudes. The BC mass concentration is a factor of 4 higher across the European and Canadian Arctic in spring, which is a consequence of the increased number of BC particles reaching the Arctic, the size of the BC particles remains constant in both seasons (Donth et al., 2020; Ohata et al., 2021; Schacht et al., 2019; Jurányi et al., 2023).
  • During ACLOUD in 2017, BC properties were derived from aerosol particles below and above clouds and from cloud residuals inside clouds. The presence of low- level clouds was associated with a radical change in the concentration and diameter of BC in the boundary layer compared to the free troposphere (Zanatta et al.,  2023).
  • BC snow sample analysis indicated that a serious single particle soot photometer measurement artefact exists in the presence of sea-salt in the samples. Currently a  new method is being developed to overcome this problem for the MOSAiC snow sample analysis.
  • An optimized analytical method for the analysis of free and combined polysaccharides in saline samples was developed (Zeppenfeld et al., 2020).
  • Laboratory studies on Arctic microorganisms, including chemical and INP analyses, revealed that marine polysaccharides in the Arctic environment contain ice-active molecular groups, so that they act as INPs. These studies provide important findings on the previously unknown chemical composition of marine INP (Wilson et al., 2015).
  • Detailed measurements of polysaccharides in diverse compartments, supported by phytoplankton measurements (C03) show indications for bioprocessing and  formation of polysaccharides on aerosol particles, which may affect the INP properties (Zeppenfeld et al., 2020, 2021; van Pinxteren et al., 2022; Dall’Osto et al.,  2022).
  • Chemical analysis and trajectories and sea ice maps (from B05) show a high enrichment of polysaccharides in aerosols when air is coming from Arctic Marginal Sea  Ice Zone (MIZ). However, despite clear indications of the importance of MIZ as a source for marine INP and polysaccharides, their transfer to the atmosphere is still not understood.

Achievements phase I

In B04, a strong variability, but no clear trend, of atmospheric Ice Nucleating Particles (INP) number concentrations over the past 500 years was discovered (Hartmann et al., 2019). However, a clear picture of INP seasonality in the Arctic with highest concentrations in summer and lowest in winter was identified from recent measurements across the Arctic (Wex et al., 2019). INP decrease from land to open sea, suggesting terrestrial contributions to the Arctic INP population (Wendisch et al., 2019). The seasonal vertical distribution of Black Carbon (BC) properties controlled by transport patterns and emission sources was observed (Schulz et al., 2019). Different sizes and concentrations  relative to the cloud layer, with enhanced concentration above clouds were identified (Wendisch et al., 2019). It was shown that the sea surface microlayer (SML) and samples from melt ponds contain ice active entities making them potential sources for atmospheric INP and marine sugars in the Arctic (Zeppenfeld et al., 2019). The free sugar glucose can act as “easy to measure” INP tracer in Arctic sea water.

Role within (AC)³

Collabortion Matrix Phase III_B04

Members

Dr. Sebastian Zeppenfeld

Postdoc

Leibniz Institute for Tropospheric Research (TROPOS)
Permoserstr. 15
04318 Leipzig

phone:

++49 (0) 341 2717 7360

e-mail:

sebastian.zeppenfeld[at]tropos.de

Dr. Manuela van Pinxteren

Principal Investigator

Leibniz Institute for Tropospheric Research (TROPOS)
Permoserstr. 15
04318 Leipzig

phone:

++49 (0) 341 2717 7102

e-mail:

manuela[at]tropos.de

Prof. Dr. Mira Pöhlker

Principle Investigator

Leibniz Institute for Tropospheric Research (TROPOS)
Permoserstr. 15
04318 Leipzig

phone:

++49 (0) 341 2717 7431

e-mail:

mira.poehlker[at]tropos.de

Dr. Zsofia Juranyi

Postdoc

Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research (AWI)
Bussestraße 24
27570 Bremerhaven

phone:

++49 (o) 471 4831 2116

e-mail:

zsofia.juranyi[at]awi.de

Dr. Andreas Herber

Principal Investigator

Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research (AWI)
Bussestraße 24
27570 Bremerhaven

phone:

++49 (0) 471 483 1489

e-mail:

Andreas.Herber[at]awi.de

Former Members

Dr. Markus Hartmann

PhD (in phase I)

Leibniz Institute for Tropospheric Research (TROPOS)
Permoserstr. 15
04318 Leipzig

Dr. Marco Zanatta

Postdoc (in phase I)

Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research (AWI)
Bussestraße 24
27570 Bremerhaven

 

Prof. Dr. Hartmut Herrmann

Principal Investigator

Leibniz Institute for Tropospheric Research (TROPOS)
Permoserstr. 15
04318 Leipzig

phone:

++49 (0) 341 2717 7024

e-mail:

herrmann[at]tropos.de

Dr. Frank Startmann

Principle Investigator

Leibniz Institute for Tropospheric Research (TROPOS)
Permoserstr. 15
04318 Leipzig

phone:

++49 (0) 341 2717 7142

e-mail:

straddi[at]tropos.de

Publications

2024

Wendisch, M., Crewell, S., Ehrlich, A., Herber, A., Kirbus, B., Lüpkes, C., Mech, M., Abel, S. J., Akansu, E. F., Ament, F., Aubry, C., Becker, S., Borrmann, S., Bozem, H., Brückner, M., Clemen, H.-C., Dahlke, S., Dekoutsidis, G., Delanoë, J., De La Torre Castro, E., Dorff, H., Dupuy, R., Eppers, O., Ewald, F., George, G., Gorodetskaya, I. V., Grawe, S., Groß, S., Hartmann, J., Henning, S., Hirsch, L., Jäkel, E., Joppe, P., Jourdan, O., Jurányi, Z., Karalis, M., Kellermann, M., Klingebiel, M., Lonardi, M., Lucke, J., Luebke, A. E., Maahn, M., Maherndl, N., Maturilli, M., Mayer, B., Mayer, J., Mertes, S., Michaelis, J., Michalkov, M., Mioche, G., Moser, M., Müller, H., Neggers, R., Ori, D., Paul, D., Paulus, F. M., Pilz, C., Pithan, F., Pöhlker, M., Pörtge, V., Ringel, M., Risse, N., Roberts, G. C., Rosenburg, S., Röttenbacher, J., Rückert, J., Schäfer, M., Schaefer, J., Schemann, V., Schirmacher, I., Schmidt, J., Schmidt, S., Schneider, J., Schnitt, S., Schwarz, A., Siebert, H., Sodemann, H., Sperzel, T., Spreen, G., Stevens, B., Stratmann, F., Svensson, G., Tatzelt, C., Tuch, T., Vihma, T., Voigt, C., Volkmer, L., Walbröl, A., Weber, A., Wehner, B., Wetzel, B., Wirth, M., and Zinner, T., 2024: Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO-(AC)³ aircraft campaign, Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024.

Lacher, L., Adams, M. P., Barry, K., Bertozzi, B., Bingemer, H., Boffo, C., Bras, Y., Büttner, N., Castarede, D., Cziczo, D. J., DeMott, P. J., Fösig, R., Goodell, M., Höhler, K., Hill, T. C. J., Jentzsch, C., Ladino, L. A., Levin, E. J. T., Mertes, S., Möhler, O., Moore, K. A., Murray, B. J., Nadolny, J., Pfeuffer, T., Picard, D., Ramírez-Romero, C., Ribeiro, M., Richter, S., Schrod, J., Sellegri, K., Stratmann, F., Swanson, B. E., Thomson, E. S., Wex, H., Wolf, M. J., and Freney, E., 2024: The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air, Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024.

2023

Rupert Holzinger, Oliver Eppers, Kouji Adachi, Heiko Bozem, Markus Hartmann, Andreas Herber, Makoto Koike, Dylan B. Millet, Nobuhiro Moteki, Sho Ohata, Frank Stratmann, Atsushi Yoshida, 2023, A signature of aged biogenic compounds detected from airborne VOC measurements in the high arctic atmosphere in March/April 2018, Atmos. Environ., Volume 309, 119919, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2023.119919.

Zeppenfeld, S., van Pinxteren, M., Hartmann, M., Zeising, M., Bracher, A., and Herrmann, H., 2023: Marine carbohydrates in Arctic aerosol particles and fog – diversity of oceanic sources and atmospheric transformations, Atmos. Chem. Phys., 23, 15561–15587, https://doi.org/10.5194/acp-23-15561-2023.

Kecorius, S.; Hoffmann, E. H.; Tilgner, A.; Barrientos-Velasco, C.; van Pinxteren, M.; Zeppenfeld, S.; Vogl, T.; Madueño, L.; Lovrić, M.; Wiedensohler, A.; Kulmala, M.; Paasonen, P. & Herrmann, H., 2023: Rapid growth of Aitken-mode particles during Arctic summer by fog chemical processing and its implication, PNAS Nexus, 10.1093/pnasnexus/pgad124

van Pinxteren, M., Zeppenfeld, S., Fomba, K. W., Triesch, N., Frka, S., and Herrmann, H., 2023: Amino acids, carbohydrates, and lipids in the tropical oligotrophic Atlantic Ocean: sea-to-air transfer and atmospheric in situ formation, Atmos. Chem. Phys., 23, 6571–6590, https://doi.org/10.5194/acp-23-6571-2023.

Sze, K. C. H.; Wex, H.; Hartmann, M.; Skov, H.; Massling, A.; Villanueva, D. & Stratmann, F., 2023: Ice Nucleating Particles in Northern Greenland: annual cycles, biological contribution and parameterizations, Atmos. Chem. Phys., 4741-4761, https://doi.org/10.5194/acp-23-4741-2023

Moser, M.; Voigt, C.; Jurkat-Witschas, T.; Hahn, V.; Mioche, G.; Jourdan, O.; Dupuy, R.; Gourbeyre, C.; Schwarzenboeck, A.; Lucke, J.; Boose, Y.; Mech, M.; Borrmann, S.; Ehrlich, A.; Herber, A.; Lüpkes, C. & Wendisch, M., 2023: Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer, Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023

Zanatta, M., Mertes, S., Jourdan, O., Dupuy, R., Järvinen, E., Schnaiter, M., Eppers, O., Schneider, J., Jurányi, Z., and Herber, A., 2023: Airborne investigation of black carbon interaction with low-level, persistent, mixed-phase clouds in the Arctic summer, Atmos. Chem. Phys., 23, 7955–7973, https://doi.org/10.5194/acp-23-7955-2023.

Jurányi, Z.; Zanatta, M.; Lund, M. T.; Samset, B. H.; Skeie, R. B.; Sharma, S.; Wendisch, M. & Herber, A., 2023: Atmospheric concentrations of black carbon are substantially higher in spring than summer in the Arctic, Commun. Earth Environ., 4, https://doi.org/10.1038/s43247-023-00749-x

Wendisch, M.; Brückner, M.; Crewell, S.; Ehrlich, A.; Notholt, J.; Lüpkes, C.; Macke, A.; Burrows, J. P.; Rinke, A.; Quaas, J.; Maturilli, M.; Schemann, V.; Shupe, M. D.; Akansu, E. F.; Barrientos-Velasco, C.; Bärfuss, K.; Blechschmidt, A.-M.; Block, K.; Bougoudis, I.; Bozem, H.; Böckmann, C.; Bracher, A.; Bresson, H.; Bretschneider, L.; Buschmann, M.; Chechin, D. G.; Chylik, J.; Dahlke, S.; Deneke, H.; Dethloff, K.; Donth, T.; Dorn, W.; Dupuy, R.; Ebell, K.; Egerer, U.; Engelmann, R.; Eppers, O.; Gerdes, R.; Gierens, R.; Gorodetskaya, I. V.; Gottschalk, M.; Griesche, H.; Gryanik, V. M.; Handorf, D.; Harm-Altstädter, B.; Hartmann, J.; Hartmann, M.; Heinold, B.; Herber, A.; Herrmann, H.; Heygster, G.; Höschel, I.; Hofmann, Z.; Hölemann, J.; Hünerbein, A.; Jafariserajehlou, S.; Jäkel, E.; Jacobi, C.; Janout, M.; Jansen, F.; Jourdan, O.; Jurányi, Z.; Kalesse-Los, H.; Kanzow, T.; Käthner, R.; Kliesch, L. L.; Klingebiel, M.; Knudsen, E. M.; Kovács, T.; Körtke, W.; Krampe, D.; Kretzschmar, J.; Kreyling, D.; Kulla, B.; Kunkel, D.; Lampert, A.; Lauer, M.; Lelli, L.; von Lerber, A.; Linke, O.; Löhnert, U.; Lonardi, M.; Losa, S. N.; Losch, M.; Maahn, M.; Mech, M.; Mei, L.; Mertes, S.; Metzner, E.; Mewes, D.; Michaelis, J.; Mioche, G.; Moser, M.; Nakoudi, K.; Neggers, R.; Neuber, R.; Nomokonova, T.; Oelker, J.; Papakonstantinou-Presvelou, I.; Pätzold, F.; Pefanis, V.; Pohl, C.; van Pinxteren, M.; Radovan, A.; Rhein, M.; Rex, M.; Richter, A.; Risse, N.; Ritter, C.; Rostosky, P.; Rozanov, V. V.; Donoso, E. R.; Saavedra-Garfias, P.; Salzmann, M.; Schacht, J.; Schäfer, M.; Schneider, J.; Schnierstein, N.; Seifert, P.; Seo, S.; Siebert, H.; Soppa, M. A.; Spreen, G.; Stachlewska, I. S.; Stapf, J.; Stratmann, F.; Tegen, I.; Viceto, C.; Voigt, C.; Vountas, M.; Walbröl, A.; Walter, M.; Wehner, B.; Wex, H.; Willmes, S.; Zanatta, M. & Zeppenfeld, S., 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)³ Project, Bull. Am. Meteorol. Soc., American Meteorological Society, 104, E208–E242, https://doi.org/10.1175/bams-d-21-0218.1

2022

M. Mech, A. Ehrlich, A. Herber, C. Lüpkes, M. Wendisch, S. Becker, Y. Boose, D. Chechin, S. Crewell, R. Dupuy, C. Gourbeyre, J. Hartmann, E. Jäkel, O. Jourdan, L.-L. Kliesch, M. Klingebiel, B. S. Kulla, G. Mioche, M. Moser, N. Risse, E. Ruiz-Donoso, M. Schäfer, J. Stapf & C. Voigt, 2022, MOSAiC-ACA and AFLUX – Arctic airborne campaigns characterizing the exit area of MOSAiC. Sci Data 9, 790. https://doi.org/10.1038/s41597-022-01900-7

van Pinxteren, M., Robinson, T.-B., Zeppenfeld, S., Gong, X., Bahlmann, E., Fomba, K. W., Triesch, N., Stratmann, F., Wurl, O., Engel, A., Wex, H., and Herrmann, H., 2022: High number concentrations of transparent exopolymer particles in ambient aerosol particles and cloud water – a case study at the tropical Atlantic Ocean, Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022.

Dall’Osto, M.; Sotomayor-Garcia, A.; Cabrera-Brufau, M.; Berdalet, E.; Vaqué, D.; Zeppenfeld, S.; van Pinxteren, M.; Herrmann, H.; Wex, H.; Rinaldi, M.; Paglione, M.; Beddows, D.; Harrison, R.; Avila, C.; Martin-Martin, R. P.; Park, J. & Barbosa, A., 2022, Leaching material from Antarctic seaweeds and penguin guano affects cloud-relevant aerosol production, Sci. Total Environ., 831, 154772, https://doi.org/10.1016/j.scitotenv.2022.154772

Shupe, M.D., M. Rex, B. Blomquist, P.O.G. Persson, J. Schmale, T. Uttal, D. Althausen, H. Angot, S. Archer, L. Bariteau, I. Beck, J. Bilberry, S. Bussi, C. Buck, M. Boyer, Z. Brasseur, I.M. Brooks, R. Calmer, J. Cassano, V. Castro, D. Chu, D. Costa, C.J. Cox, J. Creamean, S. Crewell, S. Dahlke, E. Damm, G. de Boer, H. Deckelmann, K. Dethloff, M. Dütsch, K. Ebell, A. Ehrlich, J. Ellis, R. Engelmann, A.A. Fong, M.M. Frey, M.R. Gallagher, L. Ganzeveld, R. Gradinger, J. Graeser, V. Greenamyer, H. Griesche, S. Griffiths, J. Hamilton, G. Heinemann, D. Helmig, A. Herber, C. Heuzé, J. Hofer, T. Houchens, D. Howard, J. Inoue, H.-W. Jacobi, R. Jaiser, T. Jokinen, O. Jourdan, G. Jozef, W. King, A. Kirchgaessner, M. Klingebiel, M. Krassovski, T. Krumpen, A. Lampert, W. Landing, T. Laurila, D. Lawrence, B. Loose, M. Lonardi, C. Lüpkes, M. Maahn, A. Macke, W. Maslowski, C. Marsay, M. Maturilli, M. Mech, S. Morris, M. Moser, M. Nicolaus, P. Ortega, J. Osborn, F. Pätzold, D.K. Perovich, T. Petäjä, C. Pilz, R. Pirazzini, K. Posman, H. Powers, K.A. Pratt, A. Preußer, L. Quéléver, M. Radenz, B. Rabe, A. Rinke, T. Sachs, A. Schulz, H. Siebert, T. Silva, A. Solomon, A. Sommerfeld, G. Spreen, M. Stephens, A. Stohl, G. Svensson, J. Uin, J. Viegas, C. Voigt, P. von der Gathen, B. Wehner, J.M. Welker, M. Wendisch, M. Werner, Z. Xie, F. Yue, 2022: Overview of the MOSAiC expedition – Atmosphere.  Elementa: Science of the Anthropocene, 10 (1): 00060, https://doi.org/10.1525/elementa.2021.00060.

2021

Nicolaus, M, Perovich, DK, Spreen, G, Granskog, MA, Albedyll, LV, Angelopoulos, M, Anhaus, P, Arndt, S, Belter, HJ, Bessonov, V, Birnbaum, G, Brauchle, J, Calmer, R, Cardellach, E, Cheng, B, Clemens-Sewall, D, Dadic, R, Damm, E, de Boer, G, Demir, O, Dethloff, K, Divine, DV, Fong, AA, Fons, S, Frey, MM, Fuchs, N, Gabarro´, C, Gerland, S, Goessling, HF, Gradinger, R, Haapala, J, Haas, C, Hamilton, J, Hannula, H-R, Hendricks, S, Herber, A, Heuze´ , C, Hoppmann, M, Høyland, KV, Huntemann, M, Hutchings, JK, Hwang, B, Itkin, P, Jacobi, H-W, Jaggi, M, Jutila, A, Kaleschke, L, Katlein, C, Kolabutin, N, Krampe, D, Kristensen, SS, Krumpen, T, Kurtz, N, Lampert, A, Lange, BA, Lei, R, Light, B, Linhardt, F, Liston, GE, Loose, B, Macfarlane, AR, Mahmud, M, Matero, IO, Maus, S, Morgenstern, A, Naderpour, R, Nandan,V, Niubom, A, Oggier, M, Oppelt, N, Pätzold, F, Perron, C, Petrovsky,T, Pirazzini, R, Polashenski, C, Rabe, B, Raphael, IA, Regnery, J, Rex, M, Ricker, R, Riemann-Campe, K, Rinke, A, Rohde, J, Salganik, E, Scharien, RK, Schiller, M, Schneebeli, M, Semmling, M, Shimanchuk, E, Shupe, MD, Smith, MM, Smolyanitsky,V, Sokolov,V, Stanton, T, Stroeve, J,Thielke, L,Timofeeva, A,Tonboe, RT,Tavri, A,Tsamados, M,Wagner, DN,Watkins, D,Webster, M,Wendisch, M. 2021. Overview of the MOSAiC expedition: Snow and sea ice. Elementa: Science of the Anthropocene 9(1). DOI: https://doi.org/10.1525/elementa.2021.000046

Ohata, S.; Koike, M.; Yoshida, A.; Moteki, N.; Adachi, K.; Oshima, N.; Matsui, H.; Eppers, O.; Bozem, H.; Zanatta, M. & Herber, A. B., 2021. Arctic black carbon during PAMARCMiP 2018 and previous aircraft experiments in spring, Atmos. Chem. Phys., 21, 15861-15881, https://doi.org/10.5194/acp-21-15861-2021

Zeppenfeld, S., 2021: Carbohydrates in the Arctic and the Southern Ocean – Chemical Analysis, Transfer from the Sea to the Atmosphere and Potential Relevance for Cloud Formation. Dissertation, Universität Leipzig.

Hartmann, M., 2021: Ice Nucleating Particles in the Arctic – A story of their abundance, properties and possible origin from the Little Ice Age to the current age of unpreceded Arctic warming. Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-764184

Hartmann, M., Gong, X., Kecorius, S., van Pinxteren, M., Vogl, T., Welti, A., Wex, H., Zeppenfeld, S., Herrmann, H., Wiedensohler, A., and Stratmann, F., 2021: Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N, Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021.

Zeppenfeld S., M. van Pinxteren, D. van Pinxteren, H. Wex, E. Berdalet, D. Vaqué, M. Dall’Osto, and H. Herrmann, 2021: Aerosol Marine Primary Carbohydrates and Atmospheric Transformation in the Western Antarctic Peninsula, ACS Earth Space Chem., Article ASAP,DOI: 10.1021/acsearthspacechem.0c00351

Yuan, J., Modini, R. L., Zanatta, M., Herber, A. B., Müller, T., Wehner, B., Poulain, L., Tuch, T., Baltensperger, U., and Gysel-Beer, M., 2021: Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter, Atmos. Chem. Phys., 21, 635–655, https://doi.org/10.5194/acp-21-635-2021.

Pileci, R. E., Modini, R. L., Bertò, M., Yuan, J., Corbin, J. C., Marinoni, A., Henzing, B., Moerman, M. M., Putaud, J. P., Spindler, G., Wehner, B., Müller, T., Tuch, T., Trentini, A., Zanatta, M., Baltensperger, U., and Gysel-Beer, M., 2021: Comparison of co-located refractory black carbon (rBC) and elemental carbon (EC) mass concentration measurements during field campaigns at several European sites, Atmos. Meas. Tech., 14, 1379–1403, https://doi.org/10.5194/amt-14-1379-2021.

2020

Leaitch, W. R., Kodros, J. K., Willis, M. D., Hanna, S., Schulz, H., Andrews, E., Bozem, H., Burkart, J., Hoor, P., Kolonjari, F., Ogren, J. A., Sharma, S., Si, M., von Salzen, K., Bertram, A. K., Herber, A., Abbatt, J. P. D., and Pierce, J. R., 2020: Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79° N, Atmos. Chem. Phys., 20, 10545–10563, https://doi.org/10.5194/acp-20-10545-2020.

Hartmann, M., Adachi, K., Eppers, O., Haas, C., Herber, A., Holzinger, R., Hünerbein, A., Jäkel, E., Jentzsch, C., van Pinxteren, M., Wex, H., and Stratmann, F. ,2020. Wintertime airborne measurements of ice nucleating particles in the high Arctic: a hint to a marine, biogenic source for Ice Nucleating Particles. Geophys. Res. Lett., 47, e2020GL087770. https://doi.org/10.1029/2020GL087770

Zeppenfeld, S., van Pinxteren, M., Engel, A., and Herrmann, H., 2020: A protocol for quantifying mono- and polysaccharides in seawater and related saline matrices by electro-dialysis (ED) – combined with HPAEC-PAD, Ocean Sci., 16, 817–830, https://doi.org/10.5194/os-16-817-2020.

2019

Ehrlich, A., M. Wendisch, C. Lüpkes, M. Buschmann, H. Bozem, D. Chechin, H.-C. Clemen, R. Dupuy, O. Eppers, J. Hartmann, A. Herber, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, L.-L. Kliesch, F. Köllner, M. Mech, S. Mertes, R. Neuber, E. Ruiz-Donoso, M. Schnaiter, J. Schneider, J. Stapf, and M. Zanatta, 2019: A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, https://doi.org/10.5194/essd-11-1853-2019

Kecorius, S., T. Vogl, P. Paasonen, J. Lampilahti, D. Rothenberg, H. Wex, S. ZeppenfeldM. van PinxterenM. Hartmann, S. Henning, X. Gong, A. Welti, M. Kulmala, F. StratmannH. Herrmann, and A. Wiedensohler, 2019: New particle formation and its effect on CCN abundance in the summer Arctic: a case study during PS106 cruise, Atmos. Chem. Phys., 19, 14339–14364, doi:10.5194/acp-19-14339-2019

Zeppenfeld, S., M. van Pinxteren, M. Hartmann, A. Bracher, F. Stratmann, and H. Herrmann, 2019: Glucose as a potential chemical marker for ice nucleating activity in Arctic seawater and melt pond samples, Environ. Sci. Technol., 53, 15, 8747–8756 https://doi.org/10.1021/acs.est.9b01469

Wendisch, M., A. Macke, A. Ehrlich, C. Lüpkes, M. Mech, D. Chechin, K. Dethloff, C. Barrientos, H. Bozem, M. Brückner, H.-C. Clemen, S. Crewell, T. Donth, R. Dupuy, C. Dusny, K. Ebell, U. Egerer, R. Engelmann, C. Engler, O. Eppers, M. Gehrmann, X. Gong, M. Gottschalk, C. Gourbeyre, H. Griesche, J. Hartmann, M. Hartmann, B. HeinoldA. Herber, H. Herrmann, G. Heygster, P. Hoor, S. Jafariserajehlou, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, S. Kecorius, E.M. Knudsen, F. Köllner, J. Kretzschmar, L. Lelli, D. Leroy, M. Maturilli, L. Mei, S. Mertes, G. Mioche, R. Neuber, M. Nicolaus, T. Nomokonova, J. Notholt, M. Palm, M. van Pinxteren, J. Quaas, P. Richter, E. Ruiz-Donoso, M. Schäfer, K. Schmieder, M. Schnaiter, J. Schneider, A. Schwarzenböck, P. Seifert, M.D. Shupe, H. Siebert, G. Spreen, J. Stapf, F. Stratmann, T. Vogl, A. Welti, H. Wex, A. Wiedensohler, M. Zanatta, S. Zeppenfeld, 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteor. Soc., 100 (5), 841–871, doi:10.1175/BAMS-D-18-0072.1

Wex, H., L. Huang, W. Zhang, H. Hung, R. Traversi, S. Becagli, R. Sheesley, C. Moffett, T. Barrett, R. Bossi, H. Skov, A. Hünerbein, J. Lubitz, M. Löffler, O. Linke, M. Hartmann, P. Herenz, and F. Stratmann, 2019: Annual variability of ice nucleating particle concentrations at different Arctic locations, Atmos. Chem. Phys., 19, 5293-5311, doi:10.5194/acp-19-5293-2019

Hartmann, M., T. Blunier, S.O. Brügger, J. Schmale, M. Schwikowski, A.Vogel, H.Wex, and F. Stratmann, 2019: Variation of Ice Nucleating Particles in the European Arctic over the Last Centuries, Geophysical Research Letters46 (7), 4007– 4016, doi:10.1029/2019GL082311

2018

Project Poster

 Phase III Evaluation poster 2023

Project_B04_evaluation

 Phase II Evaluation poster 2019

B04_Poster_fin_pII

 Phase I Evaluation poster 2015

B04_Poster_fin_pI