B03: Transformation of Arctic mixed–phase clouds in cold air outbreaks characterized by airborne and satellite remote sensing

PIs:  Susanne Crewell, Hartwig Deneke, André Ehrlich, (former PI: Andreas Macke)

The project aims at a thorough understanding of Arctic mixed-phase clouds and their role in Arctic amplification by synthesizing multi-campaign airborne observations  obtained over the Arctic North Atlantic, complemented by a larger-scale satellite-based analysis. With novel instrumentation developed for the Polar 5 and 6 research  aircraft in phase I, the ACLOUD and AFLUX campaigns were performed, followed by MOSAiC-ACA and HALO–(AC)³ in phase II. These measurements covered periods  between March and September and provided important information for case study analysis and refined retrieval and product development. Initial statistical analyses of  the cloud vertical column, microphysical properties, their radiative effects, and the interaction of aerosol and clouds for different seasons and surface conditions were  started, and revealed general patterns, such as a higher cloud liquid water path and less cloud ice in summer compared to spring. Depending on the turbulent mixing in  the atmospheric boundary layer, the presence of sea ice can influence the source of cloud forming particles (above or below cloud). Smaller cloud droplets were found in  clouds over sea ice. However, other parameters, such as the cloud vertical distribution are more complex and seasonal or regional differences are mainly related to  different air masses dominating the limited campaign periods.

The majority of the airborne measurements covered cold air outbreaks (CAOs), which especially are  affected by air mass transformation. Cloud transformation processes in CAOs will, thus, be the focus of our analysis in phase III. To generalize our findings, we will  extend the analysis by combining the comprehensive airborne record with Arctic-wide satellite observations. Modifications of cloud properties, such as cloud morphology, the distribution of ice and liquid cloud particles, the formation of precipitation, and the cloud radiative effects during air mass transformation will be investigated.  Ultimately, we aim to quantify the climatological significance and patterns of CAOs for the Arctic using the satellite perspective. The HALO–(AC)³ observations by HALO  and the Polar aircraft will serve as the main basis to study mixed-phase clouds and their development in CAOs in combination with satellite data and high resolution  modeling. In particular, we will focus on two stages of cloud and air mass transformation: (i) The initial formation of clouds taking place over the sea ice due to leads,  cracks, and over ice-free areas of the marginal sea ice zone (MIZ); and (ii) The downstream transition of cloud morphology, e.g., from roll convection into cell convection.

Hypothesis:

The cloud formation in the initial state of CAOs impacts the downstream evolution of cloud morphology, precipitation, and cloud radiative effects.

For testing this hypothesis the work in phase III aims to answer the questions:

  • How and when do transitions of cloud regimes occur in CAOs, vary regionally, and change with Arctic warming?
  • Do clouds over sea ice precondition the development of clouds in CAOs?
  • What are the effects of the air mass transitions on precipitation and cloud radiative forcing?

The project will contribute to the overarching Strategic Questions SQ1 and SQ2 with respect to CAOs. The evolution of boundary layer clouds and their radiative effects in  CAOs will be characterized depending on the conditions over the MIZ. Due to Arctic warming (less colder air masses, more variable sea ice edge), this cloud evolution  might experience changes. Quantifying the cloud radiative effects for different initial conditions will indicate, whether changes in the characteristics of CAOs will amplify  the Arctic warming or not.

Achievements phase II

  • A comprehensive data set has been generated through a series of (AC)³ airborne campaigns highlighting the variability of cloud properties through different  seasons, weather conditions and over different surfaces (sea ice, open ocean).
  • The variability of cloud fractions among the campaigns is mostly driven by the origin of air masses.
  • In early summer, liquid-phase clouds have a larger effective radius, optical thickness and liquid water path compared to spring conditions.
  • Larger cloud droplets and slightly reduced liquid water contents were observed over the ice-free ocean compared to sea ice, mainly driven by the surface  temperature and convection processes.
  • Cloud radar measurements reveal the dominance of hydrometeor fraction below 1.5 km. Satellite observations by CloudSat overestimate this occurrence by more than 30 % especially during CAOs.

Achievements phase I

Within B03, Arctic mixed–phase clouds were observed with a set of unique remote sensing (Mech et al., 2019) and in–situ instruments during ACLOUD (Wendisch et al., 2019) and AFLUX. A comprehensive characterisation of the horizontal and vertical variability of cloud properties was performed. Ambient and cloud forming aerosol particles were separated and analysed for their physical and chemical properties. Surprisingly, mixed–phase clouds and precipitating snow were frequently observed in a rather high temperature range between –13 ◦C and 0 ◦C. It was shown, that the vertical distribution of ice particles in clouds differs in cold and warm air masses (Knudsen et al., 2018a). Also, the in–situ observations identified larger cloud particle residuals over open ocean and smaller over sea ice, which indicates different pathways of cloud forming particles into the cloud: below-cloud mixing of large sea salt dominated over the open ocean and cloud top entrainment of smaller tropospheric particles over closed sea ice (Wendisch et al., 2019).

Role within (AC)³

Collabortion Matrix Phase III_B03

Members

Sophie Rosenburg

PhD

University of Leipzig
Leipzig Institute for Meteorology (LIM)
Stephanstr. 3
04103 Leipzig

phone:

++49 (0) 341 97 36656

e-mail:

sophie.rosenburg[at]uni-leipzig.de

Risse_Nils_1

Nils Risse

PhD (associated)

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

phone:

e-mail:

n.risse[at]uni-koeln.de

Dr. Mario Mech

Senior Scientist

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

phone:

++49 (0) 221 470 1776

e-mail:

mario.mech[at]uni-koeln.de

Dr. Marcus Klingebiel

Postdoc

University of Leipzig
Leipzig Institute for Meteorology (LIM)
Stephanstr. 3
04103 Leipzig

phone:

++49 (0) 341 97 32892

e-mail:

marcus.klingebiel[at]uni-leipzig.de

vanGelder_Lars_1

Lars van Gelder

PhD

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

phone:

 

e-mail:

lars.vangelder[at]uni-koeln.de

Dr. Hartwig Deneke

Principal Investigator

Leibniz Insititute for Tropospheric Research (TROPOS)
Permoserstr. 15
04318 Leipzig

phone:

++49 (0) 341 2717 7168

e-mail:

hartwig.deneke[at]tropos.de

Hannah Sundermann

PhD

Leibniz Institute for Tropospheric Research (TROPOS)
Permoserstr. 15
04318 Leipzig

phone:

 

e-mail:

sundermann[at]tropos.de

Dr. André Ehrlich

Principal Investigator

University of Leipzig
Leipzig Institute for Meteorology (LIM)
Stephanstr. 3
04103 Leipzig

phone:

++49 (0) 341 97 32874

e-mail:

a.ehrlich[at]uni-leipzig.de

Prof. Dr. Susanne Crewell

Principal Investigator

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

phone:

++49 (0) 221 470 5286

e-mail:

susanne.crewell[at]uni-koeln.de

Publications

2024

Schirmacher, I., S. Schnitt, M. Klingebiel, N. Maherndl, B. Kirbus, A. Ehrlich, M. Mech, and S. Crewell, 2024: Clouds and precipitation in the initial phase of marine cold air outbreaks as observed by airborne remote sensing, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-850

Maherndl, N., M. Moser, I. Schirmacher, A. Bansemer, J. Lucke, C. Voigt, and M. Maahn, 2024: How does riming influence the observed spatial variability of ice water in mixed-phase clouds?, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1214

Kirbus, B., I. Schirmacher, M. Klingebiel, M. Schäfer, A. Ehrlich, N. Slättberg, J. Lucke, M. Moser, H. Müller, and M. Wendisch, 2024: Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3 : quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses, Atm. Chem. Phys., https://doi.org/10.5194/acp-24-3883-2024

Walbröl, A., Michaelis, J., Becker, S., Dorff, H., Gorodetskaya, I., Kirbus, B., Lauer, M., Maherndl, N., Maturilli, M., Mayer, J., Müller, H., Neggers, R. A. J., Paulus, F. M., Röttenbacher, J., Rückert, J. E., Schirmacher, I., Slättberg, N., Ehrlich, A., Wendisch, M., and Crewell, S., 2024: Contrasting extremely warm and long-lasting cold air anomalies in the North Atlantic sector of the Arctic during the HALO–(AC)³ campaign, Atm. Chem. Phys., https://doi.org/10.5194/acp-24-8007-2024.

Walbröl, A., Griesche, H. J., Mech, M., Crewell, S., and Ebell, K., 2024: Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products, Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024.

Risse, N., Mech, M., Prigent, C., Spreen, G., and Crewell, S., 2024: Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations, The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024.

Röttenbacher, J., Ehrlich, A., Müller, H., Ewald, F., Luebke, A. E., Kirbus, B., Hogan, R. J., and Wendisch, M., 2024: Evaluating the representation of Arctic cirrus solar radiative effects in the Integrated Forecasting System with airborne measurements, Atmos. Chem. Phys., 24, 8085–8104, https://doi.org/10.5194/acp-24-8085-2024.

D. Arteaga, C. Planche, F. Tridon, R. Dupuy, A. Baudoux, S. Banson, J.-L. Baray, G. Mioche, A. Ehrlich, M. Mech, S. Mertes, M. Wendisch, W. Wobrock, O. Jourdan, 2024, Arctic mixed-phase clouds simulated by the WRF model: Comparisons with ACLOUD radar and in situ airborne observations and sensitivity of microphysics properties, Atmos. Res., Volume 307, 107471, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2024.107471.

Wendisch, M., Crewell, S., Ehrlich, A., Herber, A., Kirbus, B., Lüpkes, C., Mech, M., Abel, S. J., Akansu, E. F., Ament, F., Aubry, C., Becker, S., Borrmann, S., Bozem, H., Brückner, M., Clemen, H.-C., Dahlke, S., Dekoutsidis, G., Delanoë, J., De La Torre Castro, E., Dorff, H., Dupuy, R., Eppers, O., Ewald, F., George, G., Gorodetskaya, I. V., Grawe, S., Groß, S., Hartmann, J., Henning, S., Hirsch, L., Jäkel, E., Joppe, P., Jourdan, O., Jurányi, Z., Karalis, M., Kellermann, M., Klingebiel, M., Lonardi, M., Lucke, J., Luebke, A. E., Maahn, M., Maherndl, N., Maturilli, M., Mayer, B., Mayer, J., Mertes, S., Michaelis, J., Michalkov, M., Mioche, G., Moser, M., Müller, H., Neggers, R., Ori, D., Paul, D., Paulus, F. M., Pilz, C., Pithan, F., Pöhlker, M., Pörtge, V., Ringel, M., Risse, N., Roberts, G. C., Rosenburg, S., Röttenbacher, J., Rückert, J., Schäfer, M., Schaefer, J., Schemann, V., Schirmacher, I., Schmidt, J., Schmidt, S., Schneider, J., Schnitt, S., Schwarz, A., Siebert, H., Sodemann, H., Sperzel, T., Spreen, G., Stevens, B., Stratmann, F., Svensson, G., Tatzelt, C., Tuch, T., Vihma, T., Voigt, C., Volkmer, L., Walbröl, A., Weber, A., Wehner, B., Wetzel, B., Wirth, M., and Zinner, T., 2024: Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO-(AC)³ aircraft campaign, Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024.

Müller, H., Ehrlich, A., Jäkel, E., Röttenbacher, J., Kirbus, B., Schäfer, M., Hogan, R. J., and Wendisch, M., 2024: Evaluation of downward and upward solar irradiances simulated by the Integrated Forecasting System of ECMWF using airborne observations above Arctic low-level clouds, Atmos. Chem. Phys., 24, 4157–4175, https://doi.org/10.5194/acp-24-4157-2024.

2023

Rosenburg, S., Lange, C., Jäkel, E., Schäfer, M., Ehrlich, A., and Wendisch, M., 2023: Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations, Atmos. Meas. Tech., 16, 3915–3930, https://doi.org/10.5194/amt-16-3915-2023.

Ehrlich, A., Zöger, M., Giez, A., Nenakhov, V., Mallaun, C., Maser, R., Röschenthaler, T., Luebke, A. E., Wolf, K., Stevens, B., and Wendisch, M., 2023: A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets, Atmos. Meas. Tech., 16, 1563–1581, https://doi.org/10.5194/amt-16-1563-2023.

Moser, M.; Voigt, C.; Jurkat-Witschas, T.; Hahn, V.; Mioche, G.; Jourdan, O.; Dupuy, R.; Gourbeyre, C.; Schwarzenboeck, A.; Lucke, J.; Boose, Y.; Mech, M.; Borrmann, S.; Ehrlich, A.; Herber, A.; Lüpkes, C. & Wendisch, M., 2023: Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer, Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023

Zanatta, M., Mertes, S., Jourdan, O., Dupuy, R., Järvinen, E., Schnaiter, M., Eppers, O., Schneider, J., Jurányi, Z., and Herber, A., 2023: Airborne investigation of black carbon interaction with low-level, persistent, mixed-phase clouds in the Arctic summer, Atmos. Chem. Phys., 23, 7955–7973, https://doi.org/10.5194/acp-23-7955-2023.

Schirmacher, I.; Kollias, P.; Lamer, K.; Mech, M.; Pfitzenmaier, L.; Wendisch, M. & Crewell, S., 2023: Assessing Arctic low-level clouds and precipitation from above — a radar perspective, Atmos. Meas. Tech., 16, 4081–4100, https://doi.org/10.5194/amt-16-4081-2023

Wendisch, M.; Brückner, M.; Crewell, S.; Ehrlich, A.; Notholt, J.; Lüpkes, C.; Macke, A.; Burrows, J. P.; Rinke, A.; Quaas, J.; Maturilli, M.; Schemann, V.; Shupe, M. D.; Akansu, E. F.; Barrientos-Velasco, C.; Bärfuss, K.; Blechschmidt, A.-M.; Block, K.; Bougoudis, I.; Bozem, H.; Böckmann, C.; Bracher, A.; Bresson, H.; Bretschneider, L.; Buschmann, M.; Chechin, D. G.; Chylik, J.; Dahlke, S.; Deneke, H.; Dethloff, K.; Donth, T.; Dorn, W.; Dupuy, R.; Ebell, K.; Egerer, U.; Engelmann, R.; Eppers, O.; Gerdes, R.; Gierens, R.; Gorodetskaya, I. V.; Gottschalk, M.; Griesche, H.; Gryanik, V. M.; Handorf, D.; Harm-Altstädter, B.; Hartmann, J.; Hartmann, M.; Heinold, B.; Herber, A.; Herrmann, H.; Heygster, G.; Höschel, I.; Hofmann, Z.; Hölemann, J.; Hünerbein, A.; Jafariserajehlou, S.; Jäkel, E.; Jacobi, C.; Janout, M.; Jansen, F.; Jourdan, O.; Jurányi, Z.; Kalesse-Los, H.; Kanzow, T.; Käthner, R.; Kliesch, L. L.; Klingebiel, M.; Knudsen, E. M.; Kovács, T.; Körtke, W.; Krampe, D.; Kretzschmar, J.; Kreyling, D.; Kulla, B.; Kunkel, D.; Lampert, A.; Lauer, M.; Lelli, L.; von Lerber, A.; Linke, O.; Löhnert, U.; Lonardi, M.; Losa, S. N.; Losch, M.; Maahn, M.; Mech, M.; Mei, L.; Mertes, S.; Metzner, E.; Mewes, D.; Michaelis, J.; Mioche, G.; Moser, M.; Nakoudi, K.; Neggers, R.; Neuber, R.; Nomokonova, T.; Oelker, J.; Papakonstantinou-Presvelou, I.; Pätzold, F.; Pefanis, V.; Pohl, C.; van Pinxteren, M.; Radovan, A.; Rhein, M.; Rex, M.; Richter, A.; Risse, N.; Ritter, C.; Rostosky, P.; Rozanov, V. V.; Donoso, E. R.; Saavedra-Garfias, P.; Salzmann, M.; Schacht, J.; Schäfer, M.; Schneider, J.; Schnierstein, N.; Seifert, P.; Seo, S.; Siebert, H.; Soppa, M. A.; Spreen, G.; Stachlewska, I. S.; Stapf, J.; Stratmann, F.; Tegen, I.; Viceto, C.; Voigt, C.; Vountas, M.; Walbröl, A.; Walter, M.; Wehner, B.; Wex, H.; Willmes, S.; Zanatta, M. & Zeppenfeld, S., 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)³ Project, Bull. Am. Meteorol. Soc., American Meteorological Society, 104, E208–E242, https://doi.org/10.1175/bams-d-21-0218.1

Klingebiel, M., Ehrlich, A., Ruiz-Donoso, E., Risse, N., Schirmacher, I., Jäkel, E., Schäfer, M., Wolf, K., Mech, M., Moser, M., Voigt, C., and Wendisch, M., 2023: Variability and properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean, Atmos. Chem. Phys., 23, 15289–15304, https://doi.org/10.5194/acp-23-15289-2023.

Chylik, J., Chechin, D., Dupuy, R., Kulla, B. S., Lüpkes, C., Mertes, S., Mech, M., and Neggers, R. A. J., 2023: Aerosol impacts on the entrainment efficiency of Arctic mixed-phase convection in a simulated air mass over open water, Atmos. Chem. Phys., https://doi.org/10.5194/acp-23-4903-2023.

2022

M. Mech, A. Ehrlich, A. Herber, C. Lüpkes, M. Wendisch, S. Becker, Y. Boose, D. Chechin, S. Crewell, R. Dupuy, C. Gourbeyre, J. Hartmann, E. Jäkel, O. Jourdan, L.-L. Kliesch, M. Klingebiel, B. S. Kulla, G. Mioche, M. Moser, N. Risse, E. Ruiz-Donoso, M. Schäfer, J. Stapf & C. Voigt, 2022, MOSAiC-ACA and AFLUX – Arctic airborne campaigns characterizing the exit area of MOSAiC. Sci Data 9, 790. https://doi.org/10.1038/s41597-022-01900-7

Schäfer, M., Wolf, K., Ehrlich, A., Hallbauer, C., Jäkel, E., Jansen, F., Luebke, A. E., Müller, J., Thoböll, J., Röschenthaler, T., Stevens, B., and Wendisch, M., 2022: VELOX – a new thermal infrared imager for airborne remote sensing of cloud and surface properties, Atmos. Meas. Tech., 15, 1491–1509, https://doi.org/10.5194/amt-15-1491-2022.

Shupe, M.D., M. Rex, B. Blomquist, P.O.G. Persson, J. Schmale, T. Uttal, D. Althausen, H. Angot, S. Archer, L. Bariteau, I. Beck, J. Bilberry, S. Bussi, C. Buck, M. Boyer, Z. Brasseur, I.M. Brooks, R. Calmer, J. Cassano, V. Castro, D. Chu, D. Costa, C.J. Cox, J. Creamean, S. Crewell, S. Dahlke, E. Damm, G. de Boer, H. Deckelmann, K. Dethloff, M. Dütsch, K. Ebell, A. Ehrlich, J. Ellis, R. Engelmann, A.A. Fong, M.M. Frey, M.R. Gallagher, L. Ganzeveld, R. Gradinger, J. Graeser, V. Greenamyer, H. Griesche, S. Griffiths, J. Hamilton, G. Heinemann, D. Helmig, A. Herber, C. Heuzé, J. Hofer, T. Houchens, D. Howard, J. Inoue, H.-W. Jacobi, R. Jaiser, T. Jokinen, O. Jourdan, G. Jozef, W. King, A. Kirchgaessner, M. Klingebiel, M. Krassovski, T. Krumpen, A. Lampert, W. Landing, T. Laurila, D. Lawrence, B. Loose, M. Lonardi, C. Lüpkes, M. Maahn, A. Macke, W. Maslowski, C. Marsay, M. Maturilli, M. Mech, S. Morris, M. Moser, M. Nicolaus, P. Ortega, J. Osborn, F. Pätzold, D.K. Perovich, T. Petäjä, C. Pilz, R. Pirazzini, K. Posman, H. Powers, K.A. Pratt, A. Preußer, L. Quéléver, M. Radenz, B. Rabe, A. Rinke, T. Sachs, A. Schulz, H. Siebert, T. Silva, A. Solomon, A. Sommerfeld, G. Spreen, M. Stephens, A. Stohl, G. Svensson, J. Uin, J. Viegas, C. Voigt, P. von der Gathen, B. Wehner, J.M. Welker, M. Wendisch, M. Werner, Z. Xie, F. Yue, 2022: Overview of the MOSAiC expedition – Atmosphere.  Elementa: Science of the Anthropocene, 10 (1): 00060, https://doi.org/10.1525/elementa.2021.00060.

2021

Herber, A., Becker, S., Belter, H. J., Brauchle, J., Ehrlich, A., Klingebiel, M., Krumpen, T., Lüpkes, C., Mech, M., Moser, M., & Wendisch, M., 2021. MOSAiC Expedition: Airborne Surveys with Research Aircraft POLAR 5 and POLAR 6 in 2020 . In Berichte zur Polar- und Meeresforschung = Reports on Polar and Marine Research (Vol. 754, pp. 1–99). Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung. https://doi.org/10.48433/BzPM_0754_2021

Kwiezinski, C., Weller, C., van Pinxteren, D., Brüggemann, M., Mertes, S., Stratmann, F., Herrmann, H., 2021: Determination of highly polar compounds in atmospheric aerosol particles at ultra-trace levels using ion chromatography Orbitrap mass spectrometry. J Sep Sci., 44, 2343 – 2357. https://doi.org/10.1002/jssc.202001048.

Ruiz Donoso, E., 2021: Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed with airborne remote sensing during the ACLOUD campaign, Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-748337

2020

Mech, M., Maahn, M., Kneifel, S., Ori, D., Orlandi, E., Kollias, P., Schemann, V., and Crewell, S., 2020: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere, Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020.

Ruiz-Donoso, E., Ehrlich, A., Schäfer, M., Jäkel, E., Schemann, V., Crewell, S., Mech, M., Kulla, B. S., Kliesch, L.-L., Neuber, R., and Wendisch, M., 2020: Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event, Atmos. Chem. Phys., 20, 5487–5511, https://doi.org/10.5194/acp-20-5487-2020.

2019

Ehrlich, A., M. Wendisch, C. Lüpkes, M. Buschmann, H. Bozem, D. Chechin, H.-C. Clemen, R. Dupuy, O. Eppers, J. Hartmann, A. Herber, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, L.-L. Kliesch, F. Köllner, M. Mech, S. Mertes, R. Neuber, E. Ruiz-Donoso, M. Schnaiter, J. Schneider, J. Stapf, and M. Zanatta, 2019: A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, https://doi.org/10.5194/essd-11-1853-2019

Mech, M., L.-L. Kliesch, A. Anhäuser, T. Rose, P. Kollias and S. Crewell, 2019: Microwave Radar/radiometer for Arctic Clouds MiRAC: First insights from the ACLOUD campaign, Atmos. Meas. Tech., 12, 5019–5037, doi:10.5194/amt-12-5019-2019

Wendisch, M., A. Macke, A. Ehrlich, C. Lüpkes, M. Mech, D. Chechin, K. Dethloff, C. Barrientos, H. Bozem, M. Brückner, H.-C. Clemen, S. Crewell, T. Donth, R. Dupuy, C. Dusny, K. Ebell, U. Egerer, R. Engelmann, C. Engler, O. Eppers, M. Gehrmann, X. Gong, M. Gottschalk, C. Gourbeyre, H. Griesche, J. Hartmann, M. Hartmann, B. HeinoldA. Herber, H. Herrmann, G. Heygster, P. Hoor, S. Jafariserajehlou, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, S. Kecorius, E.M. Knudsen, F. Köllner, J. Kretzschmar, L. Lelli, D. Leroy, M. Maturilli, L. Mei, S. Mertes, G. Mioche, R. Neuber, M. Nicolaus, T. Nomokonova, J. Notholt, M. Palm, M. van Pinxteren, J. Quaas, P. Richter, E. Ruiz-Donoso, M. Schäfer, K. Schmieder, M. Schnaiter, J. Schneider, A. Schwarzenböck, P. Seifert, M.D. Shupe, H. Siebert, G. Spreen, J. Stapf, F. Stratmann, T. Vogl, A. Welti, H. Wex, A. Wiedensohler, M. Zanatta, S. Zeppenfeld, 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteor. Soc., 100 (5), 841–871, doi:10.1175/BAMS-D-18-0072.1

2018

Knudsen, E.M., B. Heinold, S. Dahlke, H. Bozem, S. Crewell, I. V. Gorodetskaya, G. Heygster, D. Kunkel, M. MaturilliM. Mech, C. Viceto, A. Rinke, H. Schmithüsen, A. Ehrlich, A. Macke, C. Lüpkes, M. Wendisch, 2018: Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017, Atmos. Chem. Phys., 18, 17995-18022, doi:10.5194/acp-18-17995-2018

Wendisch, M. and A. Ehrlich, 2018: Arktische Verstärkung und Wolken, promet, 102, 21-32

Schäfer, M., K. Loewe, A. Ehrlich, C. Hoose, M. Wendisch, 2018Simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus, Atmos. Chem. Phys.18, 13115-13133,
doi:10.5194/acp-18-13115-2018

Ehrlich, A., Bierwirth, E., Istomina, L., and Wendisch, M., 2017: Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing, Atmos. Meas. Tech., 10, 3215-3230, doi:10.5194/amt-10-3215-2017
Data supplement is available here.

Franz Kanngießer, 2017: Beobachtungen von Glorien über arktischen Grenzschichtwolken zur Identifikation der Wolkenphase und Ableitung deren Häufigkeit, Master Thesis, University of Leipzig

Schäfer, M., Bierwirth, E., Ehrlich, A., Jäkel, E., Werner, F., and Wendisch, M., 2017: Directional, Horizontal Inhomogeneities of Cloud Optical Thickness Fields Retrieved from Ground-Based and Airborne Spectral Imaging, Atmos. Chem. Phys., 17, 2359-2372, 2017, doi:10.5194/acp-17-2359-2017
Data supplement is available here.

Wendisch, M., M. Brückner, J. P. Burrows, S. Crewell, K. Dethloff, K. Ebell, Ch. Lüpkes, A. Macke, J. Notholt, J. Quaas, A. Rinke, and I. Tegen, 2017: Understanding causes and effects of rapid warming in the Arctic. Eos, 98, doi:10.1029/2017EO064803

Korolev, A., G. McFarquhar; P. Field; C. Franklin; P. Lawson; Z. Wang; E. Williams; S. Abel; D. Axisa; S. Borrmann; J. Crosier; J. Fugal; M. Krämer; U. Lohmann; O. Schlenczek, M. Wendisch, 2017: Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Baumgardner, D., McFarquhar, G., and Heymsfield, A. (Eds.), Chapter 5: Mixed-Phase Clouds: Progress and Challenges, AMS Meteorological Monographs, 58, pp 5.1-5.50, doi:10.1175/AMSMONOGRAPHS-D-17-0001.1

Cziczo, D. J., Ladino, L., Boose, Y., Kanji, Z. A., Kupiszewski, P., Lance, S., Mertes, S., Wex., H., 2017:  Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Baumgardner, D., McFarquhar, G., and Heymsfield, A. (Eds.), Chapter 8: Measurements of Ice Nucleating Particles and Ice Residuals, AMS Meteorological Monographs, 58, 8.1-8.13, doi:10.1175/AMSMONOGRAPHS-D-16-0008.1

Noth, R., 2016: Atmosphärische Heizraten in bewölkten und unbewölkten Bedingungen aus Flugzeugmessungen in der Arktis, Bachelor Thesis, University of Leipzig

Project Poster

 Phase III Evaluation poster 2023

Project_B03_evaluation

 Phase II Evaluation poster 2019

B03_Poster_fin_pII

 Phase I Evaluation poster 2015

B03_Poster_fin_pI